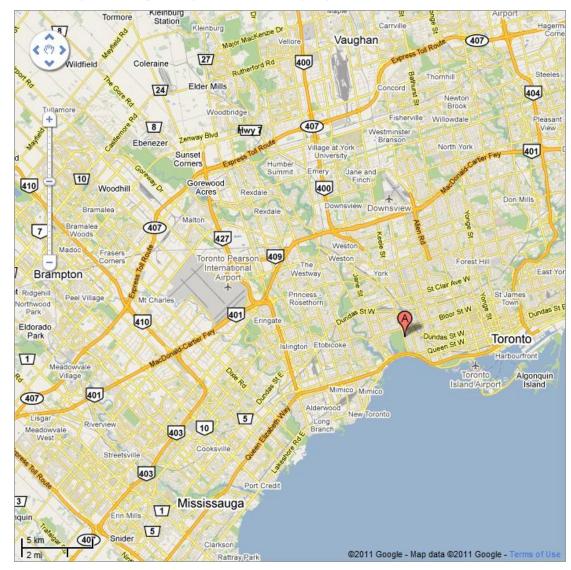
Day 27

Visibility Graphs


3/18/2011

Introduction

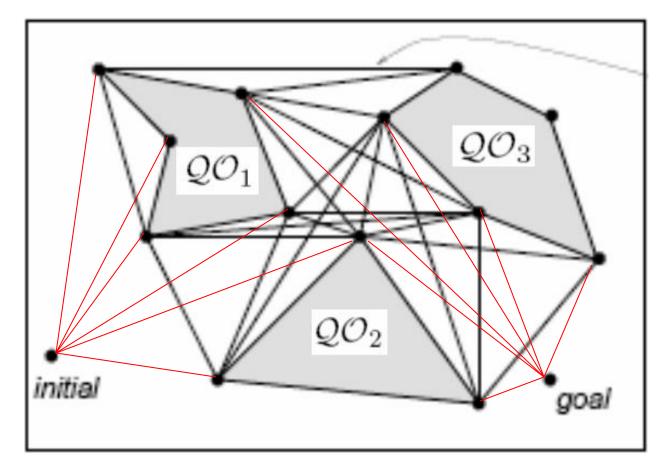
- if we have to frequently plan paths on a static environment then it makes sense to use a data structure that supports efficient planning of subsequent paths
 - e.g., visibility graph
 - nodes correspond to vertices of polygonal obstacles
 - edges correspond to paths between nodes

Roadmaps

consider the highways (in orange) in the GTA

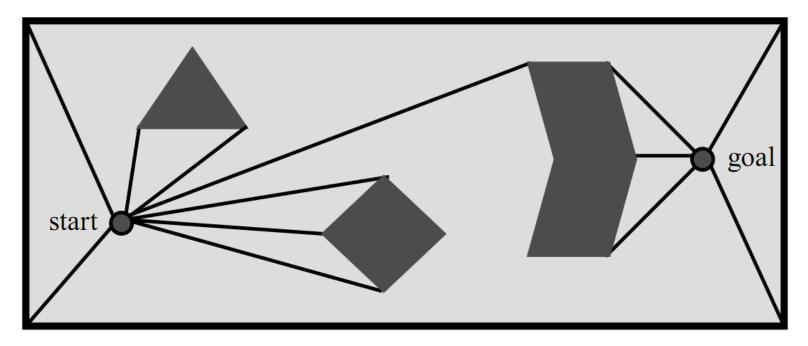
Roadmap

• definition:

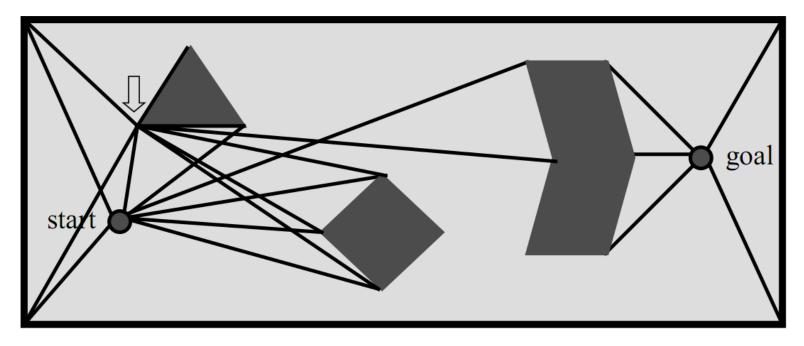

- A union of one-dimensional curves is a roadmap (RM) if for all starting points (q_{start}) and goal points (q_{goal}) in freespace (Q_{free}) that can be connected by a path the following properties hold:
- Accessibility
 - there exists a path from q_{start} to some $q'_{\text{start}} \in RM$
 - $\hfill\square$ i.e., the robot can reach the roadmap from the start point
- Departability
 - there exists a path from $q'_{\text{goal}} \in RM$ to q_{goal}
 - $\hfill\square$ i.e., the robot can depart the roadmap to reach the goal point
- Connectivity
 - \blacktriangleright there exists a path in RM from $q'_{\rm start}$ to $q'_{\rm goal}$
 - $\hfill\square$ i.e., there is a path on the roadmap connecting the start and depart points

Visibility Graph

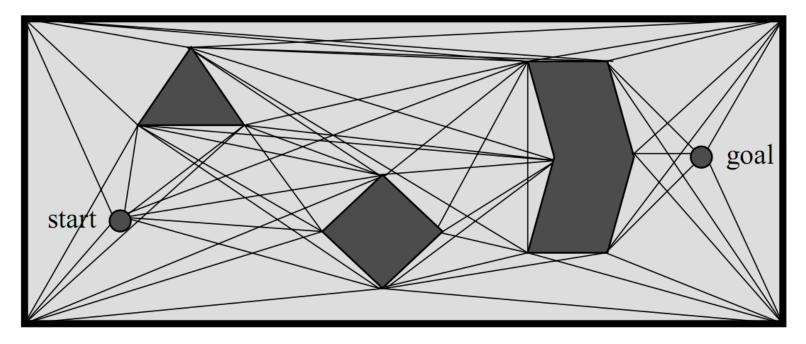
- defined for 2D space with polygonal obstacles
- a graph where
 - nodes
 - { q_{start} , q_{goal} , and vertices of all obstacles }
 - edges
 - > connect all pairs of nodes n_i and n_j that are visible to one another


Visibility Graph

contains the shortest path between the start and goal


* normally the start and goal points are included in the graph

 start by drawing lines of sight from start and goal to all visible vertices


16-735, Howie Choset, with significant copying from G.D. Hager who loosely based his notes on notes by Nancy Amato

- next, draw lines of sight from every vertex of every obstacle
 - edges of obstacles are also lines of sight

16-735, Howie Choset, with significant copying from G.D. Hager who loosely based his notes on notes by Nancy Amato

repeat until done

16-735, Howie Choset, with significant copying from G.D. Hager who loosely based his notes on notes by Nancy Amato

the algorithm described is O(N³) where N is the number of vertices

The Sweepline Algorithm

- Goal: calculate the set of vertices v_i that are visible from v
- visibility: a segment v-v_i is visible if
 - it is not within the object
 - the closest line intersecting v-v_i is beyond v_i
- Algorithm:

Initially:

- calculate the angle α_i of segment v-v_i and sort vertices by this creating list E
- create a list of edges that intersect the horizontal from v sorted by intersection distance
- For each α_i
 - if v_i is visible to v then add v-v_i to graph
 - if v_i is the "beginning" of an edge E, insert E in S
 - if v_i is the "end" of and edge E, remove E from S

Analysis: For a vertex, n log n to create initial list, log n for each α_i

Overall: n log (n) (or n² log (n) for all n vertices

16-735, Howie Choset, with significant copying from G.D. Hager who bosely based his notes on notes by Nancy Amato

		Example		V8 E7 V7
			E3 13	
				$E_8 = E_6$
Vertex	New S	Actions		
Initialization α_3	${E_4, E_2, E_8, E_6}$ ${E_4, E_3, E_8, E_6}$	Sort edges intersecting horizontal half-line Delete E_2 from S . Add E_3 to S .		E_5 v_6
α ₃ α ₇	$\{E_4, E_3, E_8, E_6\}$	Delete E_2 from \mathcal{S} . Add E_3 to \mathcal{S} . Delete E_6 from \mathcal{S} . Add E_7 to \mathcal{S} .	-	
α_4	$\{E_8, E_7\}$	Delete E_3 from S . Delete E_4 from S . ADD (v, v_4) to visibility graph	-	
α_8	{}	Delete E_7 from S . Delete E_8 from S .	1	
α ₁	$\{E_1, E_4\}$	ADD (v, v_8) to visibility graph Add E_4 to S . Add E_1 to S .	-	
α ₁	$\{\mathcal{L}_1,\mathcal{L}_4\}$	ADD (v, v_1) to visibility graph		
α_5	$\{E_4, E_1, E_8, E_5\}$	Add E_8 to S . Add E_5 to S .	1	
α_2	$\{E_4, E_2, E_8, E_5\}$	Delete E_1 from \mathcal{S} . Add E_2 to \mathcal{S} .]	
α_6	$\{E_4, E_2, E_8, E_6\}$	Delete E_5 from \mathcal{S} . Add E_6 to \mathcal{S} .]	
Termination				

16-735, Howie Choset, with significant copying from G.D. Hager who bosely based his notes on notes by Nancy Amato